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Properties of the Combinatorial Clock Auction†

By Jonathan Levin and Andrzej Skrzypacz*

The combinatorial clock auction has become popular for large-scale 
spectrum awards and other uses, replacing more traditional ascend-
ing or clock auctions. We describe some surprising properties of the 
auction, including a wide range of ex post equilibria with demand 
expansion, demand reduction, and predation. Our results obtain in 
a standard homogeneous good setting where bidders have well-be-
haved linear demand curves, and suggest some practical difficulties 
with dynamic implementations of the Vickrey auction. (JEL D44, 
D47, H82, L13)

In this paper we study some properties of a new auction design, the combinatorial 
clock auction (CCA). The CCA was proposed by Ausubel, Cramton, and Milgrom 
(2006). It is essentially a dynamic Vickrey auction. The Vickrey auction is central 
to economic theory as the unique auction that provides truthful incentives while 
achieving an efficient allocation. Yet it is often viewed as impractical for real-world 
applications because it requires bidders to submit bids for many possible packages 
of items.1 Economists think of dynamic auctions as having an advantage in this 
regard because bidders can discover gradually how their demands fit together—
what Paul Milgrom has called the “package discovery” problem.

The CCA combines an initial clock phase, during which prices rise and bidders 
state their demands in response to the current prices, with a final round in which 
bidders submit sealed package bids. The seller uses the final bids to compute the 
highest value allocation and the corresponding Vickrey payments.2 Ideally, bidders 
demand their most desired package at every stated price in the clock phase, allowing 
for information revelation. Then in the final round, they bid their true preferences, 

1 Ausubel and Milgrom (2006) offer additional reasons why sealed-bid Vickrey auctions have not caught on in 
practice, including vulnerability to collusion even by losing bidders, incentives for shill bidding, and the potential 
for low revenue. 

2 The original CCA of Ausubel, Cramton, and Milgrom (2006) and the rules used in practice actually call for a 
slight modification of Vickrey pricing, where the Vickrey prices are adjusted upward if the outcome is outside the 
core. This “core-adjustment” will not be relevant in our model, but in general it means the truth-telling properties 
of the Vickrey auction may not apply. For papers on core-adjustment see, for example, Day and Raghavan (2007), 
Day and Milgrom (2008), Erdil and Klemperer (2010), Ausubel and Baranov (2010), Beck and Ott (2013), and 
Goeree and Lien (2016). 
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leading to an efficient allocation with truthful Vickrey prices. The question we 
address is whether this is the likely equilibrium outcome of the CCA, that is, whether 
the desirable incentive properties of the Vickrey auction are retained.

The practical motivation for our study is the recent and widespread adoption of 
CCA bidding to sell radio spectrum licenses.3 Spectrum auctions have provided the 
motivation for some important recent innovations in auction design, starting with 
the simultaneous ascending auction pioneered by the FCC in the early 1990s and 
subsequently adopted in many other countries (Klemperer 2004, Milgrom 2004). 
The FCC design allows for gradual information revelation, but it does not easily 
accommodate package bidding, and it creates incentives for demand reduction 
because winners pay their bids (Cramton 2013). In principle, the CCA addresses 
both of these issues.

As it turns out, the CCA does have an equilibrium in which bidding is truthful 
and the outcome is efficient. But it is a rather tenuous equilibrium, and we identify 
two distinct reasons to doubt it. The first arises from the fact that CCA bidders 
are asked to submit their demands twice: during the clock phase and then in the 
final round. These demands are linked by activity rules, which are essential in a 
dynamic auction to make early bids meaningful and prevent bidders from holding 
back like eBay snipers (Ausubel, Cramton, and Milgrom 2006). The CCA activity 
rules have the feature that the clock phase bids can pin down exactly the allocation 
of items (Ausubel and Cramton 2011, Ausubel and Baranov 2013). Then the final 
bids determine the payments. But with Vickrey pricing, a bidder cannot affect her 
own payment unless she changes the allocation. So each bidder may be completely 
indifferent across her permissible final bids, despite the choice affecting the prices 
paid by rivals and hence incentives in the clock phase. To support the truthful and 
efficient equilibrium, bidders must maximally raise their final bids. But because bid-
ders may adopt different strategic postures in their final bids, there are also a wide 
range of other, inefficient, ex post equilibria.

The second issue we investigate involves predatory bidding. With a Vickrey pric-
ing rule, bidders have a strict incentive to bid truthfully only if their bid has a pos-
itive probability of winning. Yet in a CCA, bidders may have the opportunity in 
the clock phase to exaggerate their demand with essentially no risk of winning. By 
doing so, they can relax the activity rule constraints on their final bids and raise rival 
payments. A bidder who anticipates this type of predation has an incentive to reduce 
demand to avoid paying predatory prices, again leading to inefficient outcomes. 
While the “two demands” problem is rather specific to the CCA rules, the potential 
for predation seems likely to arise in any dynamic implementation of the Vickrey 
auction. In the CCA case, the upshot is that bidders must behave “just right” to sup-
port the truthful and efficient equilibrium, raising their final bids to the limit allowed 
by the activity constraints, but taking no action in the clock phase to purposefully 
relax these constraints.

We develop these points in a series of simple models. We start in Section I by 
describing the CCA rules and providing an example of how they work. We then 

3 Countries that have used CCAs to sell radio spectrum licenses include Australia, Austria, Canada, Denmark, 
Ireland, the Netherlands, Slovenia, Slovakia, Switzerland, and the United Kingdom. For more background on spec-
trum auctions, see Cramton (2013) or Loertscher, Marx, and Wilkening (2015). 
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focus on a standard allocation problem where bidders have linear downward slop-
ing demand curves. In Section II, we show how different strategic postures in the 
final round each give rise to a range of ex post and typically inefficient equilibria. 
The multiplicity arises even though we focus on (linear) proxy strategies in which 
bidders do not condition on rival bidding behavior. Section III then considers the 
possibility that bidders may prefer to drive up rival prices if they can do so without 
reducing their own payoff. We characterize an ex post equilibrium in which one 
bidder is predatory in the clock phase while the other restricts attention to (lin-
ear) proxy strategies and reduces his demand to keep the price down. The online 
Appendix also considers a version of the model in which both bidders are able to 
relax the final bid activity constraints, and equilibrium outcomes involve demand 
reduction in the clock phase and are again inefficient.

The models suggest that CCA rules permit a wide range of plausible behaviors and 
outcomes. In Section IV, we provide some evidence from recent auctions for radio 
spectrum. We find that even large and sophisticated bidders have adopted widely 
varying strategic postures in their CCA final bids. And in at least one high-stakes 
auction, bidders appear to have taken actions in the clock phase that served to relax 
final bid constraints and raise rival prices.

Our paper relates to an extensive literature on multi-item auctions (e.g., Milgrom 
2004, 2007). One of its central messages is that multi-item auction design involves 
hard trade-offs. The standard auctions that have been considered—simultane-
ous ascending and clock auctions, pay-as-bid combinatorial auctions—have 
well-documented limitations. In this sense, it is hardly surprising that the CCA also 
appears to have some drawbacks from a strategic perspective. In fact, one point we 
emphasize in the conclusion is that our analysis highlights a serious challenge for 
any attempt to implement a dynamic Vickrey auction, namely that it may be difficult 
to provide incentives for bidders to submit truthful bids for packages that they are 
very unlikely to win, despite these bids potentially being important for setting rival 
prices.

More narrowly, the novelty of the CCA design means there are not many directly 
related papers. The closest are Janssen and Karamychev (2013) and Janssen and 
Kasberger (2015). The first of these papers analyzes bidding incentives in a CCA 
with discrete quantities and multiple products. It shows that when bidders have pref-
erences for raising rivals’ costs (modeled similarly to what we do in Section III), 
bidders have an incentive to submit large final round bids and bid aggressively in 
the clock phase. It also considers the implications of bidder budget constraints. The 
second paper extends our analysis by characterizing equilibria in nonlinear proxy 
strategies when bidders prefer to raise rivals’ costs. A nice insight is that in some 
cases, it is possible to construct equilibria where bidders engage in predation but 
the outcome is nonetheless efficient. However, under some conditions this is not 
possible and all symmetric proxy strategy equilibria are inefficient. Finally, Salant 
(2014) provides a broader review of practical auction design that covers the CCA as 
well as competing formats.4

4 Additionally, Knapek and Wambach (2012) discuss why bidding in a CCA may be strategically complicated; 
Bichler, Shabalin, and Wolf (2013) present experimental results on the CCA. 
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I.  The Combinatorial Clock Auction

The combinatorial clock auction can be used with multiple bidders and multiple 
products in different quantities. For concreteness, we will assume there are two 
bidders, ​i  =  1, 2​ , and a single product. The product is perfectly divisible and there 
is unit supply.

The auction consists of an initial clock phase and a final bid round. In the 
clock phase, the seller gradually increases the price ​p​. In response, the bidders 
announce demands ​​x​ 1​​​, ​​x​ 2​​​. A bidder may reduce her demand, but not increase it, 
as the auction proceeds. The price increases until there is no excess demand. If at 
this point ​​∑ i​   ​​ ​x​ i​​  =  1​ , we say there is market clearing. Alternatively if ​​∑ i​   ​​ ​x​ i​​  <  1​ , 
there is excess supply. Our analysis will focus on the case where the starting price 
is low and bidders reduce their demands continuously, so there is never excess 
supply.

After the clock phase, the bidders submit final (sealed) bids ​​S​ 1​​​(​x​ 1​​)​​ and ​​S​ 2​​​(​x​ 2​​)​​ that 
express valuations for all possible quantities (i.e., each bid ​​S​ i​​​ is a function). The 
seller computes the allocation and winner payments based on these final bids. She 
selects the allocation that maximizes ​​∑ i​   ​​ ​S​ i​​ ​(​x​ i​​)​​ subject to the feasibility constraint 
that ​​∑ i​   ​​ ​x​ i​​  ≤  1​. She then computes the Vickrey payment for each bidder. Bidder ​i​ ’s 
Vickrey payment is ​ma​x​x∈[0, 1]​​​​ ​​S​ j​​ ​(x)​ − ​S​ j​​ (​x​ j​ ∗​)​ , where ​​x​ j​ ∗​​ is ​j​ ’s winning quantity.5 If ​​S​ j​​​ 
is increasing, ​i​ pays ​​S​ j​​ ​(1)​ − ​S​ j​​ (​x​ j​ ∗​)​.

The final bids are constrained by activity rules that tie them to bids in the clock 
phase. The activity rules we describe correspond to those used in recent CCA auc-
tions.6 There are three parts. First, bids in the clock phase are binding. If at price ​p​ ,  
bidder ​i​ demanded ​x​ , then bidder ​i​ ’s final bid for ​x​ units must be at least ​px​ , i.e.,  
​​S​ i​​ ​(x)​  ≥  px​ for any ​p​ that was quoted in the clock phase. Second, final bids 
must satisfy revealed preference with respect to the last clock bids. If the clock 
phase ends at a price ​​p​​ ∗​​, with ​i​ demanding ​​x​​ ∗​​ , then for any ​x  ≠ ​ x​​ ∗​,​ ​​S​ i​​ ​(x)​ − ​p​​ ∗​ x  
≤ ​ S​ i​​ ​(​x​​ ∗​)​ − ​p​​ ∗​ ​x​​ ∗​​. Third, for quantities ​x  ≥ ​ x​​ ∗​​ , ​i​ ’s final bids must satisfy an 
additional local form of revealed preference. If ​p​ was the highest price at which ​i​ 
demanded ​x​ or more units, then ​i​ cannot express an incremental value greater than ​p​ 

for obtaining slightly more than ​x​ , i.e., ​li​m​ε→​0​​ +​​​ ​ 
​S​i​​ ​(x + ε)​ − ​S​i​​ ​(x)​  __________ ε  ​  ≤  p​.7

We illustrate these activity rules with an example. For this example, we assume 
that during the clock phase bidder 2 behaves as if she has a value for ​​x​ 2​​​ units equal 
to ​​V​ 2​​​(​x​ 2​​)​  =  2 ​x ​ 2​​ − ​ 1 _ 2 ​ ​x​ 2​ 2​​ , and a diminishing marginal value ​​v​ 2​​​(​x ​ 2​​)​  =  2 − ​x ​ 2​​​.8  
So when the price is ​p​ , she demands ​​x​ 2​​​( p)​  =  2 − p​ units irrespective of bidder 1’s 

5 We do not consider reserve prices, but they can be incorporated by adding a “bidder 0” that bids ​​S​ 0​​​(x)​​ where  
​​S​ 0​​​(1)​ − ​S​ 0​​​(x)​​ is the required revenue to sell ​1 − x​ units. 

6 It is exactly the rule used in Canada, and equivalent to the rules used in Switzerland, Ireland, the Netherlands, 
and the United Kingdom if those auctions had been run for only a single category of licenses. The exact rules used 
in these auctions vary somewhat in how they handle multiple license categories. 

7 An obvious candidate for an activity rule would be to require global revealed preference. That is, if ​i​ demanded ​
x​ at price ​p​ , then for any ​z  ≠  x​ , final bids must satisfy ​​S​i​​ ​(x)​ − px  ≥ ​ S​i​​ ​(z)​ − pz​. In our model, this rule would 
impose what we later will call consistent bidding. However, as noted by Ausubel and Cramton (2011), such an 
approach seems unworkable with multiple categories because it can lead to “dead ends.” In response to this, Ausubel 
and Baranov (2013) have suggested a global approach based on GARP. We discuss their proposal in the conclusion. 

8 For this example it is not important whether ​​V​ 2​​​ is bidder 2’s actual valuation. In our equilibrium analysis below, 
bidders generally will not bid truthfully in the clock phase. 
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behavior. The quantity ​1 − ​x​ 2​​​( p)​​ is the residual supply available to bidder 1 
at price ​p​. The clock price starts at ​p  =  1​. It rises so long as bidder 1 demands  
​​x​ 1​​​( p)​  >  1 − ​x​ 2​​​( p)​​ , and stops as soon as ​​x​ 1​​​( p)​  ≤  1 − ​x​ 2​​​( p)​​. Suppose the clock 
phase ends at a price ​​p​​ ∗​​ with bidder 2 demanding ​​x​ 2​ ∗​  =  2 − ​p​​ ∗​​ , and bidder 1 
demanding ​​x​ 1​ ∗​  =  1 − ​x​ 2​ ∗​ .​

What are the permissible final bids for bidder 2? Despite the activity rules, she 
retains considerable flexibility. Figure 1 illustrates the possibilities. The lower curve 
shows the bids that bidder 2 submitted during the clock phase. As the price rose, 
bidder 2 reduced her demand continuously from ​1​ to ​​x​ 2​ ∗​​. For quantities below ​​x​ 2​ ∗​​ , 
bidder 2 has not recorded any bid during the clock phase, so her bid is zero. For 
quantities above ​​x​ 2​ ∗​​ , bidder 2 demanded ​​x​ 2​​​ units when the price was ​p  = ​ v​ 2​​​(​x​ 2​​)​​.  
When she did this, she submitted a bid of ​​x​ 2​​ ​v​ 2​​​(​x​ 2​​)​​ for ​​x​ 2​​​ units. Of course this is 
less than the value function ​​V​ 2​​​(​x​ 2​​)​​ that guided bidder 2’s clock bidding because the 
auctioneer records the revenue from bidder 2’s bid at price ​p  = ​ v​ 2​​​(​x​ 2​​)​​ , and does not 
include her consumer surplus.

The activity rules state that bidder 2’s final bid ​​S​ 2​​​ must lie everywhere above 
the bids she recorded during the clock phase. Also, above ​​x​ 2​ ∗​​ the final bid function 
cannot rise more steeply than ​​V​ 2​​​. It must satisfy the local revealed preference restric-
tion: ​​S​2​ ′ ​​(​x​ 2​​)​  ≤ ​ v​ 2​​​(​x​ 2​​)​​. So at the upper extreme, bidder 2 can raise her bids to the 

Figure 1. Activity Rule and Final Bid Options

Notes: Figure shows the flexibility that bidder 2 has in choosing final bids in the final bid round. The lower curve 
shows bidder 2’s clock phase bids, which place a lower bound on her final bids. The dashed curve is the upper bound 
for final bids (assuming bidder 2 leaves her last clock bid unchanged). The top curve is the valuation that guides bid-
der 2’s clock round bidding. The dashed upper bound is parallel to this curve for quantities above ​​x​ 2​ 
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dashed curve, which rises at a slope ​​v​ 2​​​(​x​ 2​​)​​ from her final clock bid.9 The shaded area 
in Figure 1 shows that space in which the final bid function must lie, for quantities 
above ​​x​ 2​ ∗​​. Below ​​x​ 2​ ∗​​ , bidder 2 may submit any nonnegative bid ​​S​ 2​​​ so long as it lies 
below the dotted line with slope ​​p​​ ∗​​ that runs straight from the origin to bidder 2’s 
final clock bid. These bids, however, are not important for pricing.10

Two types of final bids will be important later. We say that bidder 2 is consistent 
if she raises her final bid above ​​x​ 2​ ∗​​ to its maximum amount. When she does this, she 
expresses marginal values that correspond exactly to her (inverse) demand in the 
clock phase. That is, her demands are consistent in the two parts of the auction. In 
contrast, we say that bidder 2 is quiet if she does not raise her final bids at all, so 
that ​​S​ 2​​​(​x​ 2​​)​  = ​ x​ 2​​ ​v​ 2​​​(​x​ 2​​)​​. Under quiet bidding, ​​S​ 2​​​ corresponds to the revenue gener-
ated by bidder 2’s clock phase demand, and the slope of ​​S​ 2​​​ is the marginal revenue 
associated with assigning more units to bidder 2, rather than the marginal values 
implicit in bidder 2’s clock demand. In addition to consistent and quiet bidding, 
there are intermediate cases as well, since in the range ​​x​ 2​​  ≥ ​ x​ 2​ ∗​​ (Region II in the 
figure), bidder 2 can select any ​​S​ 2​​​(​x​ 2​​)​​ that lies in the shaded area and rises less 
steeply than ​​V​ 2​​​(​x​ 2​​)​​.

Now we turn to an important implication of the activity rules that holds whether 
bidders are consistent, quiet, or something intermediate. Suppose the clock phase 
ends with market clearing. Then the final clock demands will be value-maximizing 
for any permissible final bids. To see why, let ​​x​ 1​ ∗​, ​x​ 2​ ∗​​ be the final clock demands. 
Consider an alternative assignment where each bidder ​i​ receives ​​x​ i​​  = ​ x​ i​ ∗​ + ​ε​i​​​ , 
with ​​∑ i​   ​​ ​ε​i​​  ≤  0​ required for feasibility. From the second activity rule requirement,

(1)        ​​∑ 
i
​ 
 
  ​​ ​S​ i​​​(​x​ i​​)​  ≤ ​ ∑ 

i
​ 
 
  ​​ ​S​ i​​​(​x​ i​ ∗​)​ − ​p​​ ∗​ · ​(​x​ i​ ∗​ − ​x​ i​​)​ 

	 = ​ ∑ 
i
​ 
 
  ​​ ​S​ i​​​(​x​ i​ ∗​)​ + ​p​​ ∗​ · ​∑ 

i
​ 
 
  ​​ ​ε​i​​  ≤ ​ ∑ 

i
​ 
 
  ​​ ​S​ i​​​(​x​ i​ ∗​)​​.

This has the following consequence noted by Ausubel and Cramton (2011). 
If the clock phase ends with market clearing and ties are resolved in favor of the 
clock phase allocation, bidder ​i​ ’s quantity and payment do not depend on her final 
bids. The payment part follows from Vickrey pricing: fixing ​i​ ’s quantity, her pay-
ment depends only on the bids of others. Therefore if a bidder is maximizing her 
own individual profit she will be completely indifferent across all permissible final 
bids. However, these bids are very important for prices paid by the other bidder. 
To see this, assume for simplicity that ​​S​ 2​​​ is increasing. Then bidder 1 must pay  
​​S​ 2​​​(1)​ − ​S​ 2​​​(​x​ 2​ ∗​)​​: bidder 2’s bid for all units minus her bid for the units she wins. This 
amount is higher if bidder 2 is consistent than if she is quiet.

9 Our discussion presumes that bidder 2 does not increase her clock bid for ​​x​ 2​ ∗​​ , i.e., sets ​​S​ 2​​​(​x​ 2​ ∗​)​  = ​ x​ 2​ ∗​ ​v​ 2​​​(​x​ 2​ ∗​)​​. 
We will assume this throughout for simplicity. If bidder 2 raises her bid for ​​x​ 2​ ∗​​ by ​Δ​ she is permitted to translate all 
her bids up by this same amount, so there is an analogue of quiet and consistent bidding for any choice of ​Δ​. And 
bidding true value is permissible, of course, if bidder 2 raises her bid for ​​x​ 2​ ∗​​ , but does not raise her other bids, then 
bidder 1 could end up paying very little, and in fact pays zero if ​​S​ 2​​​ achieves its maximum at ​​x​ 2​ ∗​​. This creates the 
possibility that bidder 2’s final bids might be chosen in a way that drives down bidder 1’s payment relative to quiet 
bidding, but we will not focus on it. 

10 That is because the activity rules prevent bidder 2 from claiming to value ​​x​ 2​​  < ​ x​ 2​ ∗​​ more than she values ​​x​ 2​ ∗​​. 
So the maximum of ​​S​ 2​​​ will be achieved at a quantity ​​x​ 2​​  ≥ ​ x​ 2​ ∗​​. 
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II.  Bidding in the CCA: Discounts and Demand Expansion

In this section and the following ones, the environment is the same. There is a 
single divisible unit to be allocated. Each bidder ​i  =  1, 2​ has marginal value for 
an ​x​th unit given by ​​u​ i​​​(x)​  = ​ a​ i​​ − ​b​ i​​ x​ , where ​​a​ i​​  ≥ ​ b​ i​​  >  0​. Bidder ​i​ ’s total value 
for ​x​ units is ​​U​ i​​​(x)​  = ​ ∫ 0​ 

x​​ ​u​ i​​​(z)​ dz  = ​ a​ i​​ x − ​ 1 _ 2 ​ ​b​ i​​ ​x​​ 2​​. Throughout, we use lowercase 
to denote marginal values and upper case to denote total values. We assume the ​​a​ i​​​ s  
are private information and take values between ​[​​ a _ ​​i​​ , ​​ 

_ a ​​ i​​ ]​ , while the ​​b​ i​​​ s are common 
knowledge. To avoid messy corner solutions, we assume ​​​ _ a ​​ i​​ − ​b​ i​​  < ​​  a _ ​​j​​​ , so that effi-
cient allocation is interior and satisfies ​​u​ 1​​​(​x​ 1​​)​  = ​ u​ 2​​​(1 − ​x​ 1​​)​​.

A proxy strategy for bidder ​i​ consists of two functions: marginal values ​​v​ i​​​(x)​​ 
for the clock phase (assumed to be decreasing and continuous), and marginal val-
ues ​​s​ i​​​(x)​​ for the final bid.11 In the clock phase, bidder ​i​ demands ​x​ when ​p  = ​ v​ i​​​(x)​​  
​​(or x  =  1 if p  < ​ v​ i​​​(1)​)​​. This expresses a bid ​x ​v​ i​​​(x)​​ for ​x​ units. If the clock 
phase ends at a price ​​p​​ ∗​​ , with ​i​ demanding ​​x​ i​ ∗​​ , then in the final round, she bids  
​​S​ i​​​(x)​  = ​ x​ i​ ∗​ ​p​​ ∗​ + ​∫ ​x​ i​ ∗​​ 

x
 ​​ ​s​ i​​ ​(z)​ dz​ for quantities ​x  ≥ ​ x​ i​ ∗​​. To satisfy the activity rules, the 

proxy values must satisfy, for all ​x​: (i) ​​S​ i​​​(x)​  ≥  x ​v​ i​​​(x)​​ , and (ii) ​​s​ i​​​(x)​  ≤ ​ v​ i​​​(x)​​. The 
latter condition ensures revealed preference with respect to the final clock bid for ​
x  ≥ ​ x​ i​ ∗​​: it implies that ​​s​ i​​​(x)​  ≤ ​ p​​ ∗​  = ​ v​ i​​​(​x​ i​ ∗​)​​. For quantities ​x  < ​ x​ i​ ∗​​ , bidder ​i​ can 
set ​​S​ i​​​(x)​  =  0​; any bids that satisfy the activity rules in this region cannot affect 
allocation or pricing.

We restrict bidders to use proxy strategies and focus on equilibria in linear proxy 
strategies, in which each bidder bids a linear demand curve in the clock phase, and 
adopts a mixture of quiet and consistent behavior in the final round. Formally, bid-
der ​i​ specifies a linear demand for the clock phase

(2)	​ ​v​ i​​​(x)​  = ​ A​ i​​ − ​B​ i​​ x,​

with ​​A​ i​​  ≥ ​ B​ i​​  >  0​ , and associated marginal revenue curve

(3)	​ ​m​ i​​ ​(x)​  = ​  d _ 
dx

 ​ x ​v​ i​​​(x)​  = ​ A​ i​​ − 2 ​B​ i​​ x​.

Bidder ​i​ also specifies a linear demand for the final bid round:

(4)	​​ s​ i​​​(x)​  = ​ (1 − ​γ​i​​)​ ​v​ i​​​(x)​ + ​γ​i​​ ​m​ i​​​(x)​

	 = ​A​ i​​ − ​(1 + ​γ​i​​)​ ​B​ i​​ x​.

11 We call these proxy strategies because bidders express preferences (i.e., marginal values) that get transformed 
into demands in the auction. This is the same approach and terminology used by Ausubel and Milgrom (2002) in 
their analysis of ascending auctions with package bidding. We focus on proxy strategies in order to emphasize 
issues that are specific to the CCA. The CCA also admits a rich set of contingent or bootstrapped equilibria, in 
which bidder ​j​ makes a certain demand in equilibrium because she believes that if she doesn’t, bidder ​i​ will punish 
her as the auction proceeds. However, these types of strategies are familiar from other dynamic auctions and are 
not specific to the CCA. 
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The parameter ​​γ​i​​  ∈  [0, 1]​ captures the extent to which bidder ​i​ is consistent  
(​γ  =  0​) versus quiet (​γ  =  1​). Higher values of ​​γ​i​​​ mean lower marginal prices for 
bidder ​j​ , because ​i​ is expressing less value for any particular unit. It is easy to see 
that for any value of ​​γ​i​​​ , ​​s​ i​​​(x)​​ satisfies the activity rules.

A linear proxy strategy requires the choice of three parameters: ​​A​ i​​ , ​B​ i​​​ , and ​​γ​i​​​ . 
Provided the clock price starts sufficiently low, the clock phase will end with mar-
ket clearing. So for any ​​A​ j​​ , ​B​ j​​ , ​γ​j​​​ , bidder ​i​ ’s payoff will depend only on her choice 
of ​​A​ i​​ , ​B​ i​​​ , and will be independent of her choice of ​​γ​i​​​ . Therefore to character-
ize equilibria, we fix ​​γ​1​​​ and ​​γ​2​​​ as parameters, and solve for equilibrium choices 
of ​​A​ 1​​, ​A​ 2​​, ​B​ 1​​, ​B​ 2​​​. We focus on equilibria that are ex post, in that for any ​​a​ i​​​ , the strategy 
adopted by bidder ​i​ is a best response to ​j​ ’s strategy for every value of ​​a​ j​​  ∈  [ ​​ a _ ​​j​​ , ​​ 

_
 a ​​ j​​ ]​.

A. Proxy Best Responses

We start by deriving best responses for bidder 1. We show that if bidder 2 uses a 
linear proxy strategy, where ​​A​ 2​​​ varies with her private information ​​a​ 2​​​ , but ​​B​ 2​​​ and ​​γ​2​​​ 
do not, then bidder 1 always has an ex post best response that involves using a linear 
proxy strategy in which ​​A​ 1​​​ is the only parameter to vary with ​​a​ 1​​​ (so that iterating on 
the best-response correspondence keeps us within this class of strategies).

Suppose bidder 2 bids according to ​​v​ 2​​​(x)​  = ​ A​ 2​​ − ​B​ 2​​ x​. If bidder 1 bids according 
to ​​v​ 1​​​(x)​​ , and the clock allocation is interior, then bidder 1 obtains quantity ​​x​ 1​​​ such 
that

(5)	​ ​v​ 1​​​(​x​ 1​​)​  = ​ v​ 2​​​(1 − ​x​ 1​​)​.​

Then after the final bid round, bidder 1 will pay ​​S​ 2​​​(1)​ − ​S​ 2​​​(1 − ​x​ 1​​)​​. His final payoff 
will be

(6)	​ ​U​ 1​​​(​x​ 1​​)​ − ​[​S​ 2​​​(1)​ − ​S​ 2​​​(1 − ​x​ 1​​)​]​.​

A necessary condition for bidder 1’s strategy to be ex post optimal is that know-
ing ​​v​ 2​​​ , he does not prefer to purchase a slightly larger or smaller quantity than ​x​. The 
marginal benefit of additional quantity is ​​u​ 1​​​(x)​​ , and the marginal price is ​​s​ 2​​​(1 − x)​​. 
So a necessary condition for ex post optimality is that

(7)	​ ​u​ 1​​​(x)​  = ​ s​ 2​​​(1 − x)​.​

This condition is also sufficient for ex post optimality if it holds for all ​​v​ 2​​ , x​ that 
satisfy (5).12

12 Note that our derivation assumes for notational convenience that ​​S​ 2​​ (x)​ is maximized at ​x  =  1​ , but does 
depend on this. To see that condition (7) is sufficient, note that given ​​v​ 2​​​ , bidder 1’s global best response problem 
is first to choose ​​x​ 1​​​ that maximizes ​​U​ 1​​​(x)​ − ​{ma​x​y​​ ​S​ 2​​​(y)​ − ​S​ 2​​​(x)​}​​ , which is a concave problem, and then choose 
some decreasing ​​v​ 1​​​ such that ​​v​ 1​​​(​x​ 1​​)​  = ​ v​ 2​​​(1 − ​x​ 1​​)​​. By this reasoning, the strategies we characterize remain best 
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Substituting (5) into (7), and using the fact that bidder 2 is playing the linear 
proxy strategy ​​s​ 2​​​(1 − x)​  = ​ v​ 2​​​(1 − x)​ − ​γ​2​​ ​B​ 2​​​(1 − x)​​ , we obtain a best response for 
bidder 1,

(8)	​ ​v​ 1​​​(x)​  = ​ u​ 1​​​(x)​ + ​γ​2​​ ​B​ 2​​​(1 − x)​.​

Therefore bidder 1 can follow the linear proxy strategy ​​v​ 1​​​(x)​  = ​ A​ 1​​ − ​B​ 1​​ x​ , with

(9)	​ ​A​ 1​​  = ​ a​ 1​​ + ​γ​2​​ ​B​ 2​​  and  ​B​ 1​​  = ​ b​ 1​​ + ​γ​2​​ ​B​ 2​​ , ​

and this is a best response for every ​​a​ 2​​​.
Note that in general the best response of bidder 1 deviates from truth-telling and 

the optimal deviation depends on the behavior of bidder 2 in the final bid round. The 
closer is bidder 2 to a quiet strategy in the final round, the more aggressive is the 
best response of bidder 1. To gain intuition, recall that the clock phase determines 
allocations and the final bid determines prices. Bidder 1’s price for his final unit 
equals bidder 2’s final marginal bid for this unit, ​​s​ 2​​​(​x​ 2​ ∗​)​​. Under consistent bidding  
​​s​ 2​​​(​x​ 2​​)​  = ​ v​ 2​​​(​x​ 2​​)​​. Under quiet bidding ​​s​ 2​​​(​x​ 2​​)​  = ​  d ___ 

d ​x​ 2​​
 ​ ​x​ 2​​ ​v​ 2​​​(​x​ 2​​)​​. Consistent bidding 

means that bidder 1 must pay the clock price at which bidder 2 gave up the final 
unit. Quiet bidding means that bidder 1 must pay only the (smaller) marginal reve-
nue reduction.

Figure 2 shows the best response problem for bidder 1, and how it depends on 
bidder 2’s behavior. The ​x​-axis shows the allocation: as we move to the right, we 
increase ​​x​ 1​​​ and decrease ​​x​ 2​​​. The ​y​-axis is dollars. The solid line plots bidder 2’s 
clock demand ​​v​ 2​​​(​x​ 2​​)​​. If bidder 2 is consistent in the final round, this is also her 
final bid, and the marginal prices faced by bidder 1, so bidder 1’s best response 
is to purchase the quantity ​​x​1​ ′ ​​ , at which ​​u​ 1​​​(​x​1​ ′ ​)​  = ​ v​ 2​​​(1 − ​x​1​ ′ ​)​​. He can do this by 
bidding truthfully. The dotted line shows the marginal revenue ​​m​ 2​​​(​x​ 2​​)​​ associ-
ated with ​​v​ 2​​​. If bidder 2 is quiet in the final round, this line represents bidder 2’s 
final bids. Bidder 1’s best response is to purchase the quantity ​​x​1​ ′′​​ at which ​​u​ 1​​​(​x​1​ ′′​)​  
= ​ m​ 2​​​(1 − ​x​1​ ′′​)​​. To do this, he needs to inflate his clock round bid, so that ​​v​ 1​​​(​x​1​ ′′​)​  
= ​ v​ 2​​​(1 − ​x​1​ ′′​)​​ , as shown in the picture.

The figure shows the optimization problem for bidder 1 for a single value of ​​a​ 2​​​. 
However, bidder 1 wants the clock phase to end with his marginal benefit for addi-
tional quantity ​​u​ 1​​​(​x​ 1​​)​​ just equal to the marginal price ​​s​ 2​​​(​x​ 2​​)​​ for each realization of  
​​a​ 2​​​. To make this happen, bidder 1 needs to have ​​v​ 1​​​(​x​ 1​​)​  = ​ v​ 2​​​(​x​ 2​​)​​ at the relevant ​​x​ 1​​, ​x​ 2​​​.  
Solving the optimization problem for each ​​a​ 2​​​ traces out bidder 1’s best-response 
demand curve ​​v​ 1​​​(​x​ 1​​)​​. This is illustrated in Figure 3.

The best-response derivation highlights a key strategic issue in the CCA. On the 
one hand, if a bidder cares only about his own payoff, he is completely indifferent 
across permissible final bids (any ​​γ​i​​​ is a best response). On the other hand, the way 
the indifference is resolved is very important for determining rival incentives in the 

responses even if we remove the restriction to continuously-decreasing proxy strategies. For example, even if bid-
ders could drop demand discontinuously to end the clock phase with excess supply, they would not find it profitable. 



2537LEVIN AND SKRZYPACZ: PROPERTIES OF THE CCAVOL. 106 NO. 9

clock phase. A bidder will want to bid truthfully in the clock phase if his rival uses a 
consistent final bid strategy, but overstate his clock demand if he anticipates a quiet 
final bid strategy.

B. Proxy Equilibria

We now solve for an ex post equilibrium in linear proxy strategies. To do this, we 
combine the best response conditions (9) for bidders 1 and 2. Then, so long as ​​γ​1​​​ 
and ​​γ​2​​​ are not both equal to one,

(10)	​ ​A​ 1​​  = ​ a​ 1​​ + ​ 
​γ​2​​​(​γ​1​​ ​b​ 1​​ + ​b​ 2​​)​  __________ 

1 − ​γ​1​​ ​γ​2​​
 ​   ≡ ​ a​ 1​​ + ​λ​1​​ ,​

and

(11)	​ ​B​ 1​​  = ​ b​ 1​​ + ​ 
​γ​2​​​(​γ​1​​ ​b​ 1​​ + ​b​ 2​​)​  __________ 

1 − ​γ​1​​ ​γ​2​​
 ​   ≡ ​ b​ 1​​ + ​λ​1​​ .​

Figure 2. Best Responses to Quiet and Consistent Bidding

Notes: Figure shows bidder 1’s best responses to bidder 2 using a consistent or quiet strategy. If bidder 2 is consistent, 
bidder 1 optimally intersects his clock demand with bidder 2’s clock demand. If bidder 2 is quiet, bidder 1’s mar-
ginal price is lower than the clock price. The best response is to purchase the quantity at which bidder 1’s marginal 
value equals bidder 2’s marginal revenue, which can be done by inflating demand in the clock phase, as shown in 
the figure.
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Proposition 1: Fix any ​​γ​1​​, ​γ​2​​  ∈  [0, 1]​ with ​​γ​1​​ ​γ​2​​  <  1​. The CCA has an ex post 
equilibrium in linear proxy strategies, in which bidder ​i​ bids according to ​​v​ i​​​(x)​​ in the 
clock phase and ​​s​ i​​ ​(x)​​ in the final round, with

	​​ v​ i​​ ​(x)​  = ​ u​ i​​ ​(x)​ + ​λ​i​​ ​(1 − x)​,

	​ s​ i​​ ​(x)​  =  ​ v​ i​​ ​(x)​ − ​λ​j​​ x,​

and ​​λ​i​​  = ​ 
​γ​j​​ ​(​γ​i​​ ​b​i​​ + ​b​j​​)​
 ________ 1 − ​γ​i​​ ​γ​j​​

  ​ .​

Remark 1: The above proposition describes equilibria for ​​γ​1​​ ​γ​2​​  <  1​. What if 
both bidders are completely quiet? Then the best responses (9) imply ​​B​ 1​​  = ​ b​ 1​​ + ​B​ 2​​,​ 
and ​​B​ 2​​  = ​ b​ 2​​ + ​B​ 1​​​. The system “explodes” as ​​γ​1​​  = ​ γ​2​​  →  1​ and there is no equi-
librium. This nonexistence is a consequence of assuming two bidders and is famil-
iar from other models with linear demands (e.g., Kyle 1989 or Vives 2011). For 
example, adding to the model a small non-strategic third bidder would allow us to 
construct linear proxy equilibria even for ​​γ​1​​  = ​ γ​2​​  =  1​.

Figure 3. Identifying Ex Post Best Responses

Notes: Figure shows the derivation of bidder 1’s ex post best response. Bidder 1’s optimal clock demand is chosen 
so that for any realization of bidder 2’s demand, the clock phase ends (market clearing) at the allocation where bid-
der 1’s true marginal valuation just equals his marginal price, which he correctly anticipates will be set by bidder 2’s 
final bid. Bidder 1’s clock demand inflates his true demand.
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Figure 4 illustrates the equilibrium. It shows the equilibrium bids ​​v​ 1​​​(​x​ 1​​)​​ and ​​v​ 2​​​(​x​ 2​​)​​ 
for a particular realization of ​​a​ 1​​ , ​a​ 2​​​ , along with the final bids ​​s​ 1​​​(​x​ 1​​)​​ and ​​s​ 2​​​(​x​ 2​​)​​. As 
the clock price rises, the bidders reduce demand along their proxy demand curves  
​​v​ 1​​​(​x​ 1​​)​​ and ​​v​ 2​​​(​x​ 2​​)​​ until reaching market clearing at ​​p​​ ∗​​. At the end of the clock phase, 
the final allocation is determined to be ​​x​ 1​ ∗​ , ​x​ 2​ ∗​​. Then the final bids are made. Bidder 1 
pays ​​S​ 2​​​(1)​ − ​S​ 2​​​(​x​ 2​ ∗​)​  = ​ ∫ ​x​ 2​ ∗​​ 

1 ​​ ​s​ 2​​​(​x​ 2​​)​ d​x​ 2​​​ , which is the shaded area in the figure.  
The price bidder 1 pays for his last unit is ​​s​ 2​​​(​x​ 2​ ∗​)​​.13

13 We have described equilibria in the game in which the players choose proxy strategies. A natural question is 
whether the same behavior could be supported as equilibria if players choose their clock demands strategically in 
response to a continuously increasing price. This is relatively easy to establish if the bidders only observe the price 
and not their opponent’s current demand. In the latter case, formalizing the game in continuous time is cumber-
some. However, we can sketch how off-path equilibrium beliefs might be chosen to support the behavior above. If ​j​ 
initially bids according to the proposed strategy of some type ​​a​j​​  ∈  [​ a _ ​, ​ 

_
 a ​]​ , but then deviates, one can use “renewal 

beliefs” where ​i​ assumes that from demand ​​x​j​​​ at price ​p​ , ​j​ will bid according to the linear strategy of the type ​​a​j​​​ that 
would have bid ​​x​j​​​ at ​p​ (these are called renewal beliefs because they are applied regardless of ​j​ ’s prior behavior up 
to ​p​). To make this work for all deviations, one can expand the interval of possible bidder ​j​ types by adding zero 
probability types so that for any ​​x​j​​​ chosen at ​p​ , there is some ​​a​j​​​ that would have chosen ​​x​j​​​ under the linear strategy 
described above. 
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Figure 4. Equilibrium in the CCA Auction

Notes: Figure shows equilibrium behavior for a single realization of values. The solid lines represent the equilibrium 
clock demand curves of the bidders; the dashed lines the final round demand curves. Bidder 2’s clock round demand 
is intermediate between her clock demand and marginal revenue; she bids partway between quiet and consistent.
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C. Properties of Equilibria

Bidding Behavior.—The equilibrium involves bidders engaging in demand 
expansion during the clock phase because they perceive that their true marginal 
prices will be discounted from the clock price if their opponent is less than con-
sistent, ​​γ​2​​  >  0​. The residual supply available to bidder 1 will be ​x​ when the clock 
price is ​p  = ​ v​ 2​​​(1 − x)​​. Yet bidder 1’s true marginal price for buying the ​x​ th unit is 
only ​​s​ 2​​​(1 − x)​  =  p − ​λ​1​​​(1 − x)​​. The discount is greatest if bidder 1 is buying a 
small quantity, and smaller for large quantities. So unless bidder 2 is consistent, the 
equilibrium response is to engage in demand expansion.

Allocation and Revenue.—The equilibrium allocation is generally not efficient 
and the revenue differs from what would occur in a Vickrey auction with truthful 
bidding (unless both bidders are truthful and consistent, in which case allocation is 
efficient, and each bidder pays its truthful Vickrey price).

We can obtain a fairly sharp characterization for symmetric equilibria in 
which ​​γ​1​​  = ​ γ​2​​  =  γ​ and ​​b​ 1​​  = ​ b​ 2​​  =  b​. In this case, bidder ​i​ ’s clock phase strat-
egy is ​​v​ i​​ ​(x)​  = ​ u​ i​​ ​(x)​ + ​  γ _ 1 − γ ​ b​(1 − x)​​. Provided that ​γ  >  0​ , the equilibrium allo-
cation will be distorted toward 1/2 because a low-value bidder inflates her clock 
phase demand more than a high-value bidder. In particular, the efficient allocation ​​
(where ​u​ 1​​​(​x​ 1​​)​  = ​ u​ 2​​​(1 − ​x​ 1​​)​)​​ occurs at ​​x​ 1​ e​  = ​  1 _ 2 ​ + ​ 

​a​ 1​​ − ​a​ 2​​ _____ 2b
  ​​ . The equilibrium out-

come ​​x​ 1​ ∗​​ solves ​​v​ 1​​​(​x​ 1​​)​  = ​ v​ 2​​​(1 − ​x​ 1​​)​​ , which means

(12)	​ ​x​ 1​ ∗​  = ​  1 _ 
2
 ​ + ​ 

​a​ 1​​ − ​a​ 2​​ ______ 
2b

 ​  ​(1 − γ)​  = ​  1 _ 
2
 ​ γ + ​(1 − γ)​​x​ 1​ e​​.

It is also possible to show for the case of symmetric equilibria that the CCA revenue 
is decreasing in ​γ​. Since the outcome with ​γ =  0​ corresponds to a Vickrey auction 
with truthful bidding, this means that every symmetric equilibrium that involves any 
degree of quiet final round bidding (​γ >  0​) generates lower expected revenue than a 
truthful Vickrey auction. The derivation of this result requires some calculations that 
we go through in the online Appendix. The online Appendix also shows an example 
demonstrating that the revenue ranking is ambiguous for asymmetric equilibria.

III.  Predatory Behavior

The previous section emphasized that each bidder is indifferent between alter-
native final bids, yet her choice matters for how her opponent should behave in the 
clock phase. The result is that even if we restrict attention to relatively non-strategic 
proxy strategies, there are many equilibria involving varying amounts of demand 
expansion in the clock phase, to compensate for the price reductions offered in the 
final bid round. The equilibrium is generally not efficient, unless both bidders raise 
their bids fully in the final round.

In practice, bidders may not be truly indifferent. A bidder might benefit from raising 
rival costs, or from looking good relative to opponents. This possibility is discussed 
by Morgan, Steiglitz, and Reis (2003); Janssen and Karamychev (2013); and Janssen 
and Kasberger (2015), among others. Such a bidder will want to be consistent in her 
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final bid. However, she may also have an incentive to relax her activity constraints by 
exaggerating demand in the clock phase. Figure 5 illustrates the potential for this type 
of predatory bidding. In this figure, we start from the equilibrium in which both bid-
ders are truthful and consistent. The solid area shows bidder 1’s payment. If instead 
bidder 2 overstates her clock demand, by demanding ​​x​ 2​​  =  1​ until ​​p​​ ∗​​ , she does not 
change the allocation or her own payment. However, by bidding consistently with 
this inflated clock demand in the final round, she forces bidder 1 to pay the clock 
price ​​p​​ ∗​​ for all of his units. As we now show, if bidder 1 anticipates this predatory 
behavior, he will want to engage in demand reduction, leading to an inefficient out-
come where the predatory bidder obtains an advantage.

A. Proxy Bidding and Predatory Best Responses

We now consider a version of the model in which bidder 2 first maximizes her 
own profit, and second attempts to make her rival pay more. We assume that bid-
der 1 bids some proxy strategy ​​v​ 1​​​(x)​​ in the clock phase, and then bids consistently 
in the final round, ​​s​ 1​​​(x)​  = ​ v​ 1​​​(x)​​.14 We allow bidder 2 to use any bidding strategy so 

14 The equilibrium we derive below is consistent with bidder 1 also having a lexicographic preference for raising 
bidder 2’s payment, so long as either bidder 1 restricts attention to linear proxy strategies, or restricts attention to a 
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Figure 5. Predatory Clock Phase Bidding to Raise Rival Prices

Notes: Figure shows truthful clock demands with solid shaded area representing bidder 1’s payment. If bidder 2 main-
tains a higher (predatory) clock demand and submits final bids consistent with this higher demand, the allocation is 
unchanged but bidder 1 pays the entire shared rectangle.
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long as she does not create excess supply. To model this, we allow bidder 2 to drop 
her demand discretely, say from ​​x​2​ ′ ​​ to ​​x​ 2​​​ , at a given price ​p​ , but assume that if she 
does this, she offers to buy any intermediate quantity at that price. The last assump-
tion ensures there will be market clearing.15

Bidder 2’s most effective strategy is to keep her demand at ​1​ until the price ​p​ and 
residual supply ​1 − ​x​ 1​​​ reach a level at which

(13)	​ ​u​ 2​​​(1 − ​x​ 1​​)​  =  p  = ​ v​ 1​​​(​x​ 1​​)​,​

and then reduce her demand to ​1 − ​x​ 1​​​ ending the auction. She can then submit her 
maximal final bid of ​​S​ 2​​​(z)​  =  pz​ for ​z  ≥  1 − ​x​ 1​​​ , and make bidder 1 pay the clock 
price for all ​​x​ 1​​​ units.

Why is this optimal for bidder 2? First, consider bidder 2’s problem of max-
imizing her own profit. To buy ​​x​ 2​​​ units and obtain value ​​U​ 2​​​(​x​ 2​​)​​ she must pay  
​​S​ 1​​​(1)​ − ​S​ 1​​​(1 − ​x​ 2​​)​  = ​ V​ 1​​​(1)​ − ​V​ 1​​​(1 − ​x​ 2​​)​​.16 So she wants to choose a quantity ​​x​ 2​​​ 
that maximizes

(14)	​ ​U​ 2​​​(​x​ 2​​)​ − ​[​V​ 1​​​(1)​ − ​V​ 1​​​(1 − ​x​ 2​​)​]​.​

Therefore, her ex post optimal quantity is the unique solution to ​​u​ 2​​​(​x​ 2​​)​  
= ​ v​ 1​​​(1 − ​x​ 2​​)​.​ Moreover, conditional on buying ​​x​ 2​​​ units and ending the auction with 
market clearing, the most she can possibly make bidder 1 pay for his ​​x​ 1​​  =  1 − ​x​ 2​​​ 
units is ​​x​ 1​​ ​v​ 1​​​(​x​ 1​​)​​ , which she achieves.

Remark 2: If we allowed bidder 2 to create excess supply at the end of the 
clock phase, she could increase bidder 1’s payment even more. For example, sup-
pose bidder 1 follows a proxy strategy ​​v​ 1​​​(x)​  =  1 − x​. Then, bidder 2 with val-
uation ​​u​ 2​​​(x)​  =  1 − x​ could demand ​​x​ 2​​  =  1​ until the price reaches (almost) ​1​ 
and then drop demand to ​​x​ 2​​  =  1/2​. She would then submit a final round bid with  
​​S​ 2​​​(1)​  =  1​ and ​​S​ 2​​​(1/2)​  =  5/8​. In this way the final allocation would be ​​(1/2, 1/2)​​ 
as in the best response we described above, but bidder 1 would end up paying his 
full value: ​​S​ 2​​​(1)​ − ​S​ 2​​​(1/2)​  =  3/8  = ​ V​ 1​​​(1/2)​​. Such extreme predatory behavior 
is even more difficult to execute and even more risky for bidder 2 than what we 
describe. Moreover, analyzing equilibria in this case is difficult, so we maintain the 
assumption that bidder 2 is not allowed to create excess supply in the clock phase.

continuous proxy strategy and there is sufficiently rich support on the possible equilibrium allocations. See Janssen 
and Kasberger (2015) for a follow-up to this paper which offers a more complete analysis of the case when both 
bidders have lexicographic preferences. 

15 In particular, if bidder 1 is demanding ​​x​ 1​​​ at ​p​ and ​1 − ​x​ 1​​​ is strictly between ​​x​2​ ′ ​​ and ​​x​ 2​​​ , then when bidder 2 
drops her demand from ​​x​2​ ′ ​​ to ​​x​ 2​​​ , bidder 2 will be assigned ​1 − ​x​ 1​​​. 

16 This formula assumes that ​​v​ 1​​​(x)​  >  0​ for all ​x​. If ​​v​ 1​​​(x)​​ is negative for large ​x​ , then bidder 2 pays  
​ma​x​x​​ ​V​ 1​​​(x)​ − ​V​ 1​​​(1 − ​x​ 2​​)​​. Either way, bidder 2’s best response is to select ​​x​ 2​​​ such that ​​u​ 2​​​(​x​ 2​​)​  = ​ v​ 1​​​(1 − ​x​ 2​​)​​. 
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B. Ex Post Equilibrium with a Predatory Bidder

How does bidder 2’s predatory behavior affect the auction? Because bidder 1 
pays the full market clearing clock prices, rather than the Vickrey payment, he opti-
mally responds by reducing demand.

For bidder 1 to purchase ​x​ , he must pay ​x ​u​ 2​​​(1 − x)​​. So bidder 1’s ex post best 
response solves

(15)	​​ max​ 
x
​    ​ ​U​ 1​​​(x)​ − x ​u​ 2​​​(1 − x)​.​

The unique optimal ​x​ satisfies

(16)	​ ​u​ 1​​​(x)​  = ​ u​ 2​​​(1 − x)​ − x ​u​2​ ′ ​​(1 − x)​  = ​ u​ 2​​​(1 − x)​ + ​b​ 2​​ x​.

This implies demand reduction: ​− x ​u​2​ ′ ​​(1 − x)​  >  0,​ so in equilibrium bidder 1 gets 
a quantity that is smaller than efficient ​​(efficiency is where ​u​ 1​​​(x)​  = ​ u​ 2​​​(1 − x)​)​.​

To implement the optimal ​x​ , bidder 1 needs the clock phase to end when  
​​v​ 1​​​(x)​  = ​ u​ 2​​​(1 − x)​​. Therefore the following linear proxy strategy is ex post optimal 
against any ​​u​ 2​​​ parameterized by ​​a​ 2​​,​

(17)	​ ​v​ 1​​​(x)​  = ​ u​ 1​​​(x)​ − ​b​ 2​​ x  = ​ a​ 1​​ − ​(​b​ 1​​ + ​b​ 2​​)​ x​.

Proposition 2: Suppose bidder 2 has a lexicographic preference for making its 
rival pay more. Then there is an ex post equilibrium in which bidder 1 uses the proxy 
strategy ​​v​ 1​​​(x)​  = ​ u​ 1​​​(x)​ − ​b​ 2​​ x​ in the clock phase, and bidder 2 maintains demand of ​
1​ until dropping demand immediately to ​1 − x​ when ​p  = ​ v​ 1​​​(x)​  = ​ u​ 2​​​(1 − x)​​ and 
then both bidders are consistent in the final round.

We emphasize that the cause of the inefficiency in the above equilibrium is dis-
tinct from what we identified in Proposition 1. In the previous section, inefficient 
ex post equilibria arise because bidders, in a situation of indifference, understate 
their final demand relative to their clock bidding. Here both bidders are consistent in 
their final round bidding. The inefficiency arises because bidder 2 is able to inflate 
her inframarginal clock demand and manipulate bidder 1’s payment with no direct 
consequence for her own allocation or payment.

C. Properties of the Equilibrium with Predatory Bidder

Allocation.—In the equilibrium we described, the allocation is skewed ineffi-
ciently in favor of bidder 2. In particular, the equilibrium allocation is

(18)	​ ​x​ 1​ ∗​  = ​  ​a​ 1​​ − ​a​ 2​​ + ​b​ 2​​  _________ ​b​ 1​​ + 2 ​b​ 2​​
 ​   = ​ x​ 1​ e​ ​ 

​b​ 1​​ + ​b​ 2​​ _______ ​b​ 1​​ + 2 ​b​ 2​​
 ​  < ​ x​ 1​ e​​,

where ​​x​ 1​ e​​ is the efficient allocation. Here the intuition is straightforward: given the 
demand submitted by the bidder 1, the predatory bidder 2 wants to choose the same 
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quantity as if she was bidding truthfully, whereas bidder 1 engages in defensive 
demand reduction.

Revenue.—There are two opposing effects. First, bidder 1 reduces her demand rel-
ative to truthful bidding in the clock phase. Second, bidder 2 forces bidder 1 to pay 
the final clock price for all her units. With some algebra, one can show that reve-
nue may be above or below the truthful Vickrey revenue. For example, if ​​b​ 1​​  = ​ b​ 2​​​ 
and ​​a​ 1​​  = ​ a​ 2​​​ , the demand reduction effect dominates and revenue is lower than in the 
truthful equilibrium. If ​​b​ 1​​  = ​ b​ 2​​​ but ​​a​ 1​​  ≫ ​ a​ 2​​​ (so bidder ​1​ gets almost all units), the 
predatory effect dominates and revenues are higher than in the truthful equilibrium.

Mutual Predation.—The model we have described has a single predatory bidder. 
What happens if both bidders are predatory and attempt to push rival payments up 
toward the final clock prices? In the online Appendix, we develop a version of the 
model in which each bidder has the ability to relax its final bid constraint, and increase 
its rival’s cost. We show that this leads bidders in the clock phase to engage in demand 
reduction, which again creates inefficiency in the allocation. The modeling approach 
we adopt in the online Appendix is motivated by features of CCA sales with multiple 
categories, where in practice bidders have a fair amount of flexibility to relax the final 
round revealed preference constraints. We will discuss an example of this below.

IV.  Evidence on CCA Bidding Behavior

Given the ambiguous nature of incentives in the CCA, a natural question is whether 
data from past auctions can tell us more about bidder behavior. Either bidding data 
or summary reports are publicly available for several CCA sales of radio spectrum 
licenses. This evidence suggests a striking degree of heterogeneity across bidders 
and across auctions. Some bidders have submitted minimal final round bids, as in 
the quiet strategy described above. Some have submitted final bids that express clear 
valuation increments and resemble the consistent strategy described above. Others 
seem to have followed strategies designed to make rivals pay prices that are close to 
the linear prices at the end of the clock phase, as in our predatory bidding example.17

A. Early UK Auctions (2008)

The United Kingdom held two early CCA sales in 2008: for spectrum licenses 
in the 10–40 GHz range and then for L Band licenses. The auctions had combined 
revenue of around £10 million. We have information on these sales from reports 
released by the UK government (Cramton 2008a, b; Jewitt and Li 2008).18

17 We discuss evidence from five past auctions below. There is also some recent data available from the Canadian 
700 MHz auction conducted in early 2014. Our analysis of that data further supports the claim that there can be 
a great deal of heterogeneity in bidder behavior. Of the 3 most active bidders, 2 (Bell Canada and Telus) submit-
ted final bids for a large number of different license packages (close to 500) at essentially the maximum amount 
allowed by the activity rules, whereas the third (Rogers), which ended up paying much more for the licenses it won, 
submitted only a single final round bid, with which it increased its bid for its winning package. 

18 The UK government also published a note explaining how the bids in the 10–40 GHz auction determined the 
winner payments, “10-40GHz Auction: Note on base prices,” http://stakeholders.ofcom.org.uk/binaries/spectrum/
spectrum-awards/completed-awards/10-28-32-40-ghz-awards/baseprices.pdf (accessed July 15, 2016).

http://stakeholders.ofcom.org.uk/binaries/spectrum/spectrum-awards/completed-awards/10-28-32-40-ghz-awards/baseprices.pdf
http://stakeholders.ofcom.org.uk/binaries/spectrum/spectrum-awards/completed-awards/10-28-32-40-ghz-awards/baseprices.pdf
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In the 10–40 GHz auction, there were 10 bidders competing for 27 available 
licenses. There were 2.2 bids on average across licenses in the initial round of 
the clock phase, and it took 17 rounds to reach market clearing. However, there 
was relatively little activity in the final bid round, despite all ten bidders winning 
licenses. Only two bidders submitted final round bids on large numbers of pack-
ages. In Cramton’s (2008a) description of the auction, the others “simply increased 
their clock bids, and added a handful of supplementary [i.e., final] bids on packages 
closely related to their bids in the latter part of the clock stage.” Moreover, as Jewitt 
and Li (2008) explain, “all but one of the bidders made their highest supplementary 
bid either on their final clock package, or on a subset of it.” This is an extreme form 
of quiet bidding. Most bidders expressed zero (or in fact negative) value for incre-
mental spectrum beyond what they actually won!

In the L Band auction, there were 8 bidders and 17 licenses for sale. Bidders 
could demand arbitrary packages of these licenses. Again, there was a fair amount 
of competition in the clock phase. The average demand for the licenses in the first 
round was 3.8 and the market cleared after 32 rounds. Again, however, there was lit-
tle activity in the final bid round. Six of the bidders submitted final bids on just zero, 
one, or two packages (Cramton 2008b). Only two bidders submitted significant 
numbers of final bids. So again, the behavior of most bidders could be described as 
quiet, and there seems to have been some of the same behavior flagged by Jewitt and 
Li above. For example, Cramton (2008b) writes: “It is difficult to understand why 
WorldSpace [which entered only two new final bids] did not enter a more complete 
set of supplementary bids. Based on its bidding in the clock stage, it would appear 
to value nearly any set of 3 small lots at its upper limit of 2,614.”

B. UK 4G Auction (2013)

The United Kingdom’s subsequent auction for 800 and 2,600 MHz spectrum 
involved much more valuable licenses, with the auction generating over £2 billion 
in revenue. There were four 10 MHz licenses and a 20 MHz license available in the 
800 MHz band. There were also multiple licenses available at 2,600 MHz.

Table 1 shows the number of distinct packages bid on by each bidder in the 52 clock 
rounds, and subsequently in the final round.19 If a bidder bid for the same package in 
multiple rounds, we count it just once in the first column; if a bidder bid for a package 
in the clock phase and raised the bid in the final round, it counts in both columns.

Two of the bidders, MLL and HKT, dropped their demands to zero during the 
clock phase. Two other bidders, Telefonica and H3G, were active throughout the 
clock phase but submitted just a few final round bids. In contrast, EE, Niche, and 
Vodafone bid for large numbers of packages in the final round.

Figure 6 shows the full set of package bids submitted by Vodafone. The bars 
represent the amount of spectrum demanded in different bands, and the line above 
shows the amount of each bid. Vodafone submitted bids for essentially all combina-
tions of licenses that involved 20 MHz of low-frequency spectrum (the most it was 

19 The numbers in this section come from our own analysis of the bidding data, “Auction Data,” Ofcom, 
http://stakeholders.ofcom.org.uk/spectrum/spectrum-awards/awards-archive/completed-awards/800mhz-2.6ghz/
auction-data/ (accessed July 15, 2016). 

http://stakeholders.ofcom.org.uk/spectrum/spectrum-awards/awards-archive/completed-awards/800mhz-2.6ghz/auction
http://stakeholders.ofcom.org.uk/spectrum/spectrum-awards/awards-archive/completed-awards/800mhz-2.6ghz/auction
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allowed to bid for) and the most desirable high-frequency spectrum. The bids are 
highly systematic. Vodafone expressed a value for the 20 MHz low-frequency block 
nearly equivalent to its value for two 10 MHz blocks, and appears to have expressed 
clear incremental values for the high-frequency blocks.

The incremental values expressed in these final bids are consistent with Vodafone’s 
demand reductions in the clock phase. For instance, in clock round 37, when the 
price was £87.6 million for each 10 MHz license, Vodafone reduced demand from 
4 to 3 C band licenses. Later in its final round bidding, it expressed an incremental 

Table 1—Bidding in the United Kingdom 800/2,600 Auction

Packages bid MHz won

Bidder Clock Final  800 2,600 Payment

EE 6 48  10 70 £589M
Niche (BT) 7 89  — 20 £186M
H3G 7 12 10 — £225M
MLL 8 8 — — —
HKT 8 8 — — —
Telefonica 7 6 20 — £550M
Vodafone 11 94 20 65 £791M
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Figure 6. Final Bids by Vodafone in the United Kingdom 800/2,600 MHz Auction

Notes: Figure shows all of Vodafone’s final bids in the UK 800/2,600 auction. The solid bars show the composition 
of each bid in terms of the MHz demanded in each of the four color-coded bands (E, C, A1, and A2). The solid line 
above shows the value of the bid in GBP (£). Vodafone’s bids place consistent value on spectrum increments cor-
responding to clock behavior.
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value of £87.6 million for a fourth C band license. Toward the end of the clock 
phase, Vodafone was bidding for 20 MHz at 800 MHz and 30 MHz in band C, and 
reduced its demand from seven to five to four to three and then to zero licenses in 
band E. The prices at which it made the reductions are consistent with the final bids 
shown in Figure 6. In this sense, Vodafone appears to have bid in a way that approx-
imates fairly closely the consistent behavior described above.

Telefonica, which bid for similar amounts of spectrum during the clock phase, 
behaved very differently in its final round bidding. Figure 7 shows its complete set 
of package bids. Telefonica bid for seven different packages in the clock rounds. 
In the final round, it added four new packages (bids 1–4), raised its bid for two 
packages from the clock phase (bids 5–6), and left five clock phase bids unchanged 
(bids 7–11). The bids it left unchanged are dominated. They could not have been 
winning bids or mattered for rival prices as each is for a larger package than bid 4, 
and offers less money.

Telefonica’s five meaningful bids were quite similar in terms of spectrum 
demanded and amount offered. Bid 2 was Telefonica’s winning bid. So Telefonica 
expressed very little value for packages larger than what it won—the incremental 
values expressed in its final bids are much lower than the prices at which it reduced 
demand in the clock rounds. In this sense, its bidding behavior was much closer to 
the quiet strategy described above than to consistent bidding.
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Figure 7. Final Bids by Telefonica in the United Kingdom 800/2,600 MHz Auction

Notes: Figure shows all of Telefonica’s final bids in the United Kingdom 800/2,600 auction. The solid bars show 
the composition of each bid in terms of the MHz demanded in each of the four color-coded bands (E, C, A1, and 
A2). The solid line above shows the value of the bid in GBP (£). Telefonica submitted very few serious bids in 
the sealed bid round, with much smaller incremental valuations than it revealed during the clock phase, closer to a 
quiet strategy.
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C. Austrian 4G Auction (2013)

The Austrian 4G auction involved the sale of high-value spectrum licenses in the 
800, 900, and 1,800 MHz bands. The only bidders were the three major wireless 
companies in Austria. Each was limited to bidding on no more than 50 percent of the 
available licenses. This still allowed any two bidders to submit a combined bid for 
all licenses in the auction, i.e., it did not imply that winners automatically received 
some spectrum at reserve prices.

The auction yielded revenue of just over €2 billion, which far exceeded forecasts.20 
A report released by the regulatory authority after the auction cited aggressive final 
round bids as a key factor in the high prices paid by the winners:21 The report reads:

During [the final bid] stage every bidder was allowed to submit as many 
as 3,000 supplementary bids. (…) The three bidders actually submitted 
a total of more than 4,000 supplementary bids. More than 65 percent of 
these supplementary bids were submitted for the largest permissible com-
binations of frequency blocks, with a share of some 50 percent of available 
frequencies. In addition, the bidders utilised almost to the full the price 
limits that had applied to these large packages during the sealed-bid [i.e., 
final] stage. (…) These supplementary bids submitted on large frequency 
packages had a significant effect on the prices offered by the other bidders. 
At the same time, such bids generally only have a marginal likelihood of 
winning out in the end. If these bids for very large numbers of frequencies 
had been ignored when determining the winners and prices, the revenue 
from the auction would have settled at a level of about EUR 1 billion.

A remarkable feature of the Austrian auction is that the final revenue ended up 
quite close to the total license prices at the end of the clock phase, which were €2.07 
billion. Had the bidders submitted no final round bids (i.e., been quiet), the winners 
would have paid €765 million. Instead they paid €2.01 billion. If bidding in both 
stages of the auction was truthful, average license prices under the Vickrey formula 
only would be as high as prices at the end of the clock phase if bidders were willing 
to pay for all their incremental spectrum at the same rate as for a marginal license. It 
seems very likely therefore that in this auction bidders took steps to relax their final 
bid activity constraints. The online Appendix describes a version of the model with 
this feature, in which due to mutually aggressive behavior both bidders can end up 
paying nearly full clock prices for every unit.

V.  Conclusion

Our analysis highlights two properties of the combinatorial clock auction. First, 
the activity rules used to encourage truthful bidding mean that a bidder’s final round 
bids may have no effect at all on her own payoff. Yet if bidders do not increase their 

20 Press coverage after the auction quoted one industry CEO as saying that the high prices were “a bitter pill to  
swallow,” and another as claiming that the outcome was “a disaster for the industry as a whole.” “Austrian operators  
file complaints over spectrum auction or 800 MHz, 900 MHz and 1800 MHz,” FierceWireless:Europe, http://
www.fiercewireless.com/europe/story/austrian-operators-file-complaints-over-spectrum-auction-800-mhz-900-
mhz-an/2013-11-27 (accessed July 15, 2016). 

21 The report, titled “Result of the 2013 multiband auction driven by consistently offensive bidding strategy on 
the part of all three contenders” is available at https://www.rtr.at/en/pr/PI28102013TK (accessed July 15, 2016), 
along with a presentation containing the numbers quoted below. 

http://www.fiercewireless.com/europe/story/austrian-operators-file-complaints-over-spectrum-auction-800-mhz-900-mhz-an/2013
http://www.fiercewireless.com/europe/story/austrian-operators-file-complaints-over-spectrum-auction-800-mhz-900-mhz-an/2013
http://www.fiercewireless.com/europe/story/austrian-operators-file-complaints-over-spectrum-auction-800-mhz-900-mhz-an/2013
https://www.rtr.at/en/pr/PI28102013TK
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final bids to levels consistent with their expressed demand in the clock phase (and 
they have no strict incentive to do so), this leads to price discounts and incentives for 
demand expansion in the initial clock phase. The result is a wide range of ex post equi-
libria, with no guarantee of an efficient allocation or truthful Vickrey prices. Second, 
the auction provides bidders with the opportunity to raise rival prices with little or 
no risk to their own payoff by relaxing the constraints on their final bids. We have 
illustrated how this can lead not just to higher payments, but to distorted incentives 
in the clock phase and inefficient allocations. In Section III, a single predatory bid-
der maintains high demand during the clock phase before dropping demand to clear 
the market, leading to an equilibrium in which the second bidder reduces demand to 
avoid high payments. Janssen and Kasberger (2015) expand this analysis by show-
ing that in our model, if both bidders have lexicographic preferences to raise rival 
costs, an efficient equilibrium in proxy strategies may not exist at all.

A loose way to summarize these points is that in order to support a truthful equi-
librium as we expect in a Vickrey auction, the CCA relies on bidders behaving “just 
right”: raising their final round bids maximally so that the revealed preference activ-
ity constraints bind, but not taking actions in the clock phase to purposely relax 
these constraints. Our examples show how, if bidders are not sufficiently aggressive, 
or are overly aggressive, incentives for demand expansion and/or reduction appear 
and outcomes need not be efficient, even if behavior is completely understood and 
bidders play minimally strategic ex post equilibria.

Our analysis makes several simplifying assumptions. We mostly restrict atten-
tion to proxy strategies in which bidders do not condition their bidding on rival 
behavior. With contingent strategies, our model admits many more equilibria. These 
include highly collusive equilibria in which bidders split the market and drive each 
other’s prices to zero, using the threat of aggressive final bids to punish deviations. 
However, these types of equilibria also arise in traditional clock auctions and are not 
special to the CCA.22 Our assumptions also implied that the clock phase ends with 
market clearing. If bidders can drop demand discontinuously, the clock phase may 
end with some units unallocated. This can be useful for package bidders who want 
to avoid exposure problems—a potentially important benefit of the CCA that is not 
captured in our model23—but also creates new strategic possibilities.24

Another important point is that while our analysis shows some limitations of the 
CCA, other multi-item auction designs have their own drawbacks. Ausubel et al. 
(2014) have shown in great generality that uniform price auctions create incentives 
for demand reduction and inefficiency. Ausubel and Milgrom (2006) have cataloged 
problems with the sealed-bid Vickrey auction, such as incentives for collusion, and 
the fact that Vickrey outcomes may lie outside the core. Our analysis points to a 
further problem with the Vickrey auction that we view as equally serious. If bidders 

22 In fact, Riedel and Wolfstetter (2006) show that the simultaneous multiple round auction with complete 
information has an essentially unique subgame perfect equilibrium in which the bidders immediately demand their 
efficient allocation and the auction ends. 

23 See Bulow, Levin, and Milgrom (2009) and Cramton (2013) for discussions of the exposure problem faced 
by package bidders in traditional clock auctions. 

24 If there are unallocated units in the final round of the CCA, bidders will have an incentive to bid truthfully 
for these units, but not necessarily for units that they cannot possibly win. The ability to create excess supply also 
creates new opportunities for predation, as a predatory bidder can potentially drop its demand to zero and subse-
quently raise its rival’s payment as illustrated in Remark 2. 
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understand that the allocation will almost certainly lie in a particular range (the 
relevant situation in most radio spectrum auctions), their incentives to bid truthfully 
outside of this range may be very weak despite these bids potentially being crucial 
for pricing. Of course, in a static Vickrey auction, bidding truthfully is still weakly 
dominant.25 However in a dynamic implementation of Vickrey pricing, the dominant 
strategy property is lost. In our model of Section III, bidder 1’s strict best response 
to bidder 2’s predation is to engage in demand reduction, leading to inefficiency.

From a practical standpoint, an auction designer choosing between a CCA and 
a uniform price auction (e.g., a simultaneous multi-round or clock auction) faces 
a set of trade-offs. The need for flexible package bidding favors a CCA design. So 
does the potential for highly inefficient demand reduction. In the other direction, the 
CCA is arguably a more complicated design and can create situations where there 
is considerable ambiguity about the prices a bidder faces at any point in the auction. 
Dealing with this potentially requires a high level of bidder sophistication. As we 
have seen in the paper, there is also the possibility for widely varying prices within 
an auction depending on the strategic postures adopted by bidders.26

A final question is whether different CCA activity rules could resolve some of the 
issues we have flagged, and lead to a successful dynamic Vickrey implementation. A 
recent and very interesting paper by Ausubel and Baranov (2013) suggests one pos-
sibility, which is to require that clock phase bids satisfy GARP, and then to use an 
algorithm based on the Afriat inequalities to fill in the final bids. In our setting, this 
would amount to requiring global rather than local revealed preference. This would 
resolve the quiet bidding problems illustrated in Section II, but not the predatory 
bidding problems illustrated in Section III.27 Nevertheless, this proposal and others 
seem to merit further investigation.
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